
VDM++ tutorial 1

VDM++ Tutorial at FM’06

Professor Peter Gorm Larsen
Engineering College of Aarhus

Computer Technology & Embedded Systems
(pgl@iha.dk)

VDM++ tutorial Introduction 2

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction

• Access Modifiers and Constructors

• Instance Variables

• Types

• Functions

• Expressions, Patterns, Bindings

• Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 3

Who gives this tutorial?

• Peter Gorm Larsen; MSc, PhD
• 18 years of professional experience

• ½ year with Technical University of Denmark
• 13 years with IFAD
• 3,5 years with Systematic
• 3/4 year with University College of Aarhus

• Consultant for most large defence contractors on large complex
projects (e.g. JSF)

• Relations to industry and academia all over the world
• Has written books and articles about VDM
• See http://home0.inet.tele.dk/pgl/peter.htm for details

http://home0.inet.tele.dk/pgl/peter.htm

VDM++ tutorial Introduction 4

Vienna Development Method

• Invented at IBM’s labs in Vienna in the 70’s
• VDM-SL and VDM++

• ISO Standardisation of VDM-SL
• VDM++ is an object-oriented extension

• Model-oriented specification:
• Simple, abstract data types
• Invariants to restrict membership
• Functional specification:

• Referentially transparent functions
• Operations with side effects on state variables
• Implicit specification (pre/post)
• Explicit specification (functional or imperative)

VDM++ tutorial Introduction 5

Where has VDM++ been used?

• Modeling critical computer systems e.g. for industries
such as
• Avionics
• Railways
• Automotive
• Nuclear
• Defense

• I have used this industrially for example at:
• Boeing, Lockheed-Martin (USA)
• British Aerospace, Rolls Royce, Adelard (UK)
• Matra, Dassault, Aerospatiale (France)
• …

VDM++ tutorial Introduction 6

Industrially Inspired Examples

• Chemical Plant Alarm Management
System

• A Robot Controller
• A Road Congestion Warning System

VDM++ tutorial Introduction 7

Validation Techniques
• Inspection: organized process of examining the model

alongside domain experts.
• Static Analysis: automatic checks of syntax & type

correctness, detect unusual features.
• Testing: run the model and check outcomes against

expectations.
• Model Checking: search the state space to find states

that violate the properties we are checking.
• Proof: use a logic to reason symbolically about whole

classes of states at once.

VDM++ tutorial Introduction 8

Validation via Animation
Execution of the model through an interface. The
interface can be coded in a programming language of
choice so long as a dynamic link facility (e.g. CORBA)
exists for linking the interface code to the model.

Formal
model

Interpreter

Interface

C++ or
Java
interface
code

Testing can increase confidence, but is only as good as
the test set. Exhaustive techniques could give greater
confidence.

VDM++ tutorial Introduction 9

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

• Instance Variables

• Types

• Functions

• Expressions, Patterns, Bindings

• Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 10

VDM++ Class Outline

class class <class<class--name>name>

end end <class<class--name>name>

instance variablesinstance variables

...
Internal object stateInternal object state

...

typestypes

valuesvalues

functionsfunctions

operationsoperations

...

DefinitionsDefinitions

...

threadthread

... Dynamic behaviourDynamic behaviour...

syncsync

...
Synchronization controlSynchronization control

...

VDM++ tutorial Introduction 11

Access Modifiers

• VDM++ Class Members may have their access specified
as public, private or protected.

• The default for all members is private
• Access modifiers may not be narrowed e.g. a subclass

can not override a public operation in the superclass with
a private operation in the subclass.

• static modifiers can be used for definitions which are
independent of the object state.

VDM++ tutorial Introduction 12

Constructors

• Each class can have a number of constructors
• Syntax identical to operations with a reference to the

class name in return type
• The return does not need to be made explicitly
• Can be invoked when a new instance of a class gets

created

VDM++ tutorial Introduction 13

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

• Types

• Functions

• Expressions, Patterns, Bindings

• Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 14

Instance Variables (1)

• Used to model attributes
• Consistency properties modelled as invariants

classclass PersonPerson
typestypes

string = string = seq ofseq of charchar
instance variablesinstance variables

name: string := [];name: string := [];
age: age: intint := 0;:= 0;
invinv 0 <= age 0 <= age andand age <= 99;age <= 99;

endend PersonPerson

VDM++ tutorial Introduction 15

Instance Variables (2)

• Used to model associations
• Object reference type simply written as the class

name, e.g. Person
• Multiplicity using VDM data types

classclass PersonPerson
......

instance variablesinstance variables
name: string := [];name: string := [];
age: age: intint := 0;:= 0;
employer: employer: set ofset of CompanyCompany
......

endend PersonPerson

classclass CompanyCompany
......

endend CompanyCompany

VDM++ tutorial Introduction 16

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

Types

• Functions

• Expressions, Patterns, Bindings

• Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 17

Type Definitions

•Compound types
•Set types
•Sequence types
•Map types
•Product types
•Composite types
•Union types
•Optional types
•Function types

•Basic types
•Boolean
•Numeric
•Tokens
•Characters
•Quotations

Invariants can be addedInvariants can be added

VDM++ tutorial Introduction 18

Boolean

not b Negation bool -> bool

a and b Conjunction bool * bool -> bool

a or b Disjunction bool * bool -> bool

a => b Implication bool * bool -> bool

a <=> b Biimplication bool * bool -> bool

a = b Equality bool * bool -> bool

a <> b Inequality bool * bool -> bool

Quantified expressions can also be considered Quantified expressions can also be considered
to be basic operators but we will present them to be basic operators but we will present them
together with the other general expressions together with the other general expressions

VDM++ tutorial Introduction 19

Numeric (1)

-x Unary minus real -> real

abs x Absolute value real -> real

floor x Floor real -> int

x + y Sum real * real -> real

x - y Difference real * real -> real

x * y Product real * real -> real

x / y Division real * real -> real

x div y Integer division int * int -> int

x rem y Remainder int * int -> int

x mod y Modulus int * int -> int

x ** y Power real * real -> real

VDM++ tutorial Introduction 20

Numeric (2)

x < y Less than real * real -> bool

x > y Greater than real * real -> bool

x <= y Less or equal real * real -> bool

x >= y Greater or equal real * real -> bool

x = y Equal real * real -> bool

x <> y Not equal real * real -> bool

VDM++ tutorial Introduction 21

Product and Record Types

• Product type definition:
A1 * A2 * … * An

Construction of a tuple:
mk_(a1,a2,…,an)

• Record type definition:
A :: selfirst : A1

selsec : A2
…

seln : An
Construction of a record:

mk_A(a1,a2,...,an)

VDM++ tutorial Introduction 22

Example Record Definition

A record type could be defined as:

Address ::
house : HouseNumber
street : Street
town : PostalTown

With field selectors:

mk_Address(15,"The Grove",<London>).street

VDM++ tutorial Introduction 23

Example Tuple Definition

A tuple type could type could be defined as:

nat1 * (seq of char) * PostalTown

Then fields can be used using the .# operator:

mk_(12,"Abstraction Avenue",<Manchester>).#2

VDM++ tutorial Introduction 24

Overview of Set Operators

e in set s1 Membership (∈) A * set of A -> bool

e not in set s1 Not membership (∉) A * set of A -> bool

s1 union s2 Union (∪) set of A * set of A -> set of A

s1 inter s2 Intersection (∩) set of A * set of A -> set of A

s1 \ s2 Difference (\) set of A * set of A -> set of A

s1 subset s2 Subset (⊆) set of A * set of A -> bool

s1 psubset s2 Proper subset (⊂) set of A * set of A -> bool

s1 = s2 Equality (=) set of A * set of A -> bool

s1 <> s2 Inequality (≠) set of A * set of A -> bool

card s1 Cardinality set of A -> nat

dunion s1 Distr. Union (∪) set of set of A -> set of A

dinter s1 Distr. Intersection (∩) set of set of A -> set of A

power s1 Finite power set (P) set of A -> set of set of A

VDM++ tutorial Introduction 25

Set Comprehensions

• Using predicates to define sets implicitly
• In VDM++ formulated like:

• {element | list of bindings & predicate}
• The predicate part is optional
• Quick examples:

• {3 * x | x : nat & x < 3} or {3 * x | x in set {0,…,2}}
• {x | x : nat & x < 5} or {x | x in set {0,…,4}}

VDM++ tutorial Introduction 26

Sequence Operators

hd l Head seq1 of A -> A

tl l Tail seq1 of A -> seq of A

len l Length seq of A -> nat

elems l Elements seq of A -> set of A

inds l Indexes seq of A -> set of nat1

l1 ^ l2 Concatenation seq of A * seq of A -> seq of A

conc ll Distr. conc. seq of seq of A -> seq of A

l(i) Seq. application seq1 of A * nat1 -> A

l ++ m Seq. modification seq1 of A * map nat1 to A ->
seq1 of A

l1 = l2 Equality seq of A * seq of A -> bool

l1 <> l2 Inequality seq of A * seq of A -> bool

VDM++ tutorial Introduction 27

Sequence Comprehensions
• Using predicates to define sequences implicitly
• In VDM++ formulated like:

• [element | numeric set binding & predicate]
• The predicate part is optional
• The numeric order of the binding is used to

determine the order in the sequence
• The smallest number is taken to be the first

index
• Quick examples

• [3 * x | x in set {0,…,2}]
• [x | x in set {0,…,4} & x > 2]

VDM++ tutorial Introduction 28

Map Operators

dom m Domain (map A to B) -> set of A
rng m Range (map A to B) -> set of B

m1 munion m2 Merge (map A to B) * (map A to B) ->
(map A to B)

m1 ++ m2 Override (map A to B) * (map A to B) ->
(map A to B)

merge ms Distr. merge set of (map A to B) -> map A to B

s <: m Dom. restr. to set of A * (map A to B) -> map A to B
s <-: m Dom. restr. by set of A * (map A to B) -> map A to B
m :> s Rng. restr. to (map A to B) * set of A -> map A to B

m :-> s Rng. restr. by (map A to B) * set of A -> map A to B
m(d) Map apply (map A to B) * A -> B
inverse m Map inverse inmap A to B -> inmap B to A

m1 = m2 Equality (map A to B) * (map A to B) -> bool
m1 <> m2 Inequality (map A to B) * (map A to B) -> bool

VDM++ tutorial Introduction 29

Mapping Comprehensions

• Using predicates to define mappings implicitly
• In VDM++ formulated like:

• {maplet | list of bindings & predicate}
• The predicate part is optional
• Quick examples

• {i |-> i*i | i: nat1 & i <= 4}
• {i**2 |-> i/2 | i in set {1,…,5}}

VDM++ tutorial Introduction 30

Invariants

DTDT
inv_DTinv_DT

Even = Even = natnat
invinv n == n n == n modmod 2 = 02 = 0

SpecialPair = SpecialPair = natnat * * real real –– the first is smallestthe first is smallest
invinv mkmk_(n,r) == n < r_(n,r) == n < r

DisjointSets = DisjointSets = set of set ofset of set of AA
invinv ss == ss == forallforall s1, s2 s1, s2 in setin set ss &ss &

s1 <> s2 => s1 s1 <> s2 => s1 interinter s2 = {}s2 = {}

VDM++ tutorial Introduction 31

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

Types

Functions

• Expressions, Patterns, Bindings

• Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 32

Function Definitions (1)

• Explicit functions:
f: A * B * … * Z -> R1 * R2 * … * Rn
f(a,b,…,z) ==
expr

pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,RESULT)

• Implicit functions:
f(a:A, b:B, …, z:Z) r1:R1, …, rn:Rn
pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,r1,…,rn)

Implicit functions cannot be executed by the VDM
interpreter.

VDM++ tutorial Introduction 33

Function Definitions (2)

• Extended explicit functions:
f(a:A, b:B, …, z:Z) r1:R1, …, rn:Rn ==
expr

pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,r1,…,rn)

Extended explicit functions are a non-standard
combination of the implicit colon style with an explicit
body.

• Preliminary explicit functions:
f: A * B * … * Z -> R1 * R2 * … * Rn
f(a,b,…,z) ==
is not yet specified

pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,RESULT)

VDM++ tutorial Introduction 34

Quoting pre- and post-conditions

Given an implicit function definition like:Given an implicit function definition like:
ImplFn(n,m: ImplFn(n,m: natnat, b: , b: boolbool) r:) r: natnat
prepre n < mn < m
post ifpost if b b thenthen n = r n = r elseelse r = mr = m

Two extra functions which can be used elsewhere are Two extra functions which can be used elsewhere are
automatically created:automatically created:

prepre_ImplFn: _ImplFn: natnat * * natnat * * boolbool --> > boolbool
prepre_ImplFn(n,m,b) == _ImplFn(n,m,b) ==

n < m;n < m;

postpost_ImplFn: _ImplFn: natnat * * natnat * * boolbool * * natnat --> > boolbool
postpost_ImplFn(n,m,b,r) ==_ImplFn(n,m,b,r) ==

ifif b b
thenthen n = r n = r
elseelse r = mr = m

VDM++ tutorial Introduction 35

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

Types

Functions

Expressions, Patterns, Bindings

• Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 36

Expressions

•Let and let-be expressions
•If-then-else expressions
•Cases expressions
•Quantified expressions
•Set expressions
•Sequence expressions
•Map expressions
•Tuple expressions
•Record expressions
•Is expressions
•Define expressions
•Lambda expressions

•New and Self expressions
•Class membership expressions
•Object comparison expressions
•Object reference expressions

Special VDM++ Expressions

VDM++ tutorial Introduction 37

Example Let Expressions

• Let expressions are used for naming complex
subexpressions:
let d = b ** 2 - 4 * a * c
in

mk_((-b – sqrt(d))/2a,(-b + sqrt(d))/2a)

• Let expressions can also be used for breaking down
complex data structures into components:
let mk_Report(tel,-,ov) = rep
in

sub-expr

VDM++ tutorial Introduction 38

Example Let-be expressions

•• LetLet--bebe--suchsuch--that expressions are even more powerful. A that expressions are even more powerful. A
free choice can be expressed:free choice can be expressed:
letlet i i in set in set indsinds l l be be stst Largest(Largest(elemselems l, l, l(il(i))))
inin
sub_exprsub_expr

andand

letlet l l in setin set Permutations(listPermutations(list)) be be stst
forallforall i,ji,j in set in set indsinds l l && i < j => i < j => l(il(i) <=) <= l(jl(j))

in in ll

VDM++ tutorial Introduction 39

If-then-else Expressions

IfIf--thenthen--else expressions are similar to those known from else expressions are similar to those known from
programming languages.programming languages.
ifif c c in set domin set dom rqrq
thenthen rq(c)rq(c)
elseelse {}{}

andand
ifif i = 0i = 0
thenthen <Zero><Zero>
elseifelseif 1 <= i 1 <= i andand i <= 9i <= 9
thenthen <Digit><Digit>
elseelse <Number><Number>

VDM++ tutorial Introduction 40

Cases Expressions

Cases expressions are very powerful because of pattern Cases expressions are very powerful because of pattern
matching:matching:

casescases com:com:
mkmk_Loan(a,b) _Loan(a,b) --> a^> a^”” has borrowed has borrowed ““^b,^b,
mkmk_Receive(a,b) _Receive(a,b) --> a^> a^”” has returned has returned ““^b,^b,
mkmk_Status(l) _Status(l) --> l^> l^”” are borrowing are borrowing ““^Borrows(l),^Borrows(l),
othersothers --> > ””some other command is usedsome other command is used””

endend

andand
casescases a:a:

mkmk_A(a_A(a’’,,--,a,a’’)) --> Expr(a> Expr(a’’),),
mkmk_A(b,b,c) _A(b,b,c) --> Expr2(b,c)> Expr2(b,c)

endend

VDM++ tutorial Introduction 41

Set Expressions

• Set enumeration:
{a,3,3,true}

• Set comprehension can either use set binding:
{a+2 | mk_(a,a) in set

{mk_(true,1),mk_(1,1)}}
or type binding:
{a | a: nat & a<10}

• Set range expression:
{3,...,10}

VDM++ tutorial Introduction 42

Sequence Expressions

• Sequence enumeration:
[7.7,true,”I”,true]

• Sequence comprehension can only use a set bind with
numeric values (numeric order is used):
[i*i | i in set {1,2,4,6}]

and
[i | i in set {6,3,2,7} & i mod 2 = 0]

• Subsequence expression:
[4,true,”string”,9,4](2,...,4)

VDM++ tutorial Introduction 43

Map Expressions

• Map enumeration:
{1|->true, 7|->6}

• Map comprehension can either use type binding:
{i|->mk_(i,true) | i: bool}

or set binding:
{a+b|->b-a | a in set {1,2},

b in set {3,6}}
and
{i|->i | i in set {1,...,10} &

i mod 3 = 0}

One must be careful to ensure that every domain
element maps uniquely to one range element.

VDM++ tutorial Introduction 44

Tuple Expressions

• A tuple expression looks like:
mk_(2,7,true,{|->})

• Remember that tuple values from a tuple type will
always
• have the same length and
• use the same types (possible union types) at

corresponding positions.
• On the other hand the length of a sequence value

may vary but the elements of the sequence will
always be of the same type.

VDM++ tutorial Introduction 45

Record Expression

Given two type definitions like:
A :: n: nat

b: bool
s: set of nat;

B :: n: nat
r: real

one can write expressions like:
mk_A(1,true,{8})
mk_B(3,3)
mu (mk_A(7,false,{1,4}), n|->1, s|->{})
mu (mk_B(3,4), r|->5.5)

The mu operator is called “the record modifier”.

VDM++ tutorial Introduction 46

Apply Expressions

• Map applications:
let m = {true|->5, 6|->{}}
in m(true)

• Sequence applications:
[2,7,true](2)

• Field select expressions:
let r = mk_A(2,false,{6,9})
in r.b

VDM++ tutorial Introduction 47

Is Expressions

Basic values and record values can be tested by
is- expressions.
is_nat(5) will yield true.

is_C(mk_C(5)) will also yield true, given that C is
defined as a record type having one
component which 5 belongs to.

is_A(mk_B(3,7)) will always yield false.

is_A(6) will also always yield false.

VDM++ tutorial Introduction 48

Define Expressions

The rightThe right--hand side of a define expression has hand side of a define expression has
access to the instance variables.access to the instance variables.

The state could be changed by an operation call:The state could be changed by an operation call:

defdef a = OpCall(arg1,arg2) a = OpCall(arg1,arg2) inin f(a)f(a)

or parts of the state could simply be read:or parts of the state could simply be read:
defdef a = instance_variable a = instance_variable inin g(a)g(a)

VDM++ tutorial Introduction 49

Lambda Expressions

• Lambda expressions are an alternative way of
defining explicit functions.
lambda n: nat & n * n

• They can take a type bind list:
lambda a: nat, b: bool &

if b then a else 0

• or use more complex types:
lambda mk_(a,b): nat * nat & a + b

VDM++ tutorial Introduction 50

New and Self Expressions

• The new expression creates an instance of a class
and yields a reference to it.

• Given a class called C this will create an instance of
C and return its reference:
new C()

• The self expression yields the reference of an
object.

• Given a class with instance variable a of type nat
this will initialize an object and yield its reference:
Create: nat ==> C
Create (n) ==
(a := n;
return self)

VDM++ tutorial Introduction 51

Class Membership Expressions

Check if an object is of a particular class.
isofclass(Class_name,object_ref)

Returns true if object_ref is of class Class_name or a
subclass of Class_name.
Check for the baseclass of a given object.

isofbaseclass(Class_name,object_ref)

For the result to be true, object_ref must be of
class Class_name, and Class_name cannot have
any superclasses.

VDM++ tutorial Introduction 52

Object Comparison Expressions

Compare two objects.

sameclass(obj1,obj2)

True if and only if obj1 and obj2 are instances of the same class
sameclass(m,s)
sameclasssameclass(m(m, , newnew Manager())Manager())

≡≡ falsefalse
≡≡ truetrue

Comparison of baseclasses of two objects.

samebaseclass(obj1,obj2)

samebaseclasssamebaseclass(m,s(m,s))
samebaseclasssamebaseclass(m(m, , newnew Temporary())Temporary())

≡≡ truetrue
≡≡ falsefalse

VDM++ tutorial Introduction 53

Object Reference Expressions

• The = and <> operators perform comparison of object
references.

• = will only yield true, if the two objects are in fact the
same instance.

• <> will yield true, if the two objects are not the same
instance, even if they have the same values in all
instance variables.

VDM++ tutorial Introduction 54

Patterns and Pattern Matching

• Patterns are empty shells
• Patterns are matched thereby binding the pattern

identifiers
• There are special patterns for

• Basic values
• Pattern identifiers
• Don’t care patterns
• Sets
• Sequences
• Tuples
• Records

but not for maps

VDM++ tutorial Introduction 55

Bindings

• A binding matches a pattern to a value.
• A set binding:

pat in set expr
where expr must denote a set expression.
pat is bound to the elements of the set expr

• A type binding:
pat : type

Here pat is bound to the elements of type.
Type bindings cannot be executed by the interpreter,
because such types can be infinitely large.

VDM++ tutorial Introduction 56

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

Types

Functions

Expressions, Patterns, Bindings

Operations

• Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 57

Operation Definitions (1)

• Explicit operation definitions:
o: A * B * ... ==> R
o(a,b,...) ==

stmt
pre expr
post expr

• Implicit operations definitions:
o(a:A, b:B,...) r:R
ext rd ...

wr ...
pre expr
post expr

VDM++ tutorial Introduction 58

Operation Definitions (2)

• Preliminary operation definitions:
o: A * B * ... ==> R
o(a,b,...) ==
is not yet specified

pre expr

post expr
• Delegated operation definitions:

o: A * B * ... ==> R
o(a,b,...) ==
is subclass responsibility

pre expr
post expr

VDM++ tutorial Introduction 59

Operation Definitions (3)

• Operations in VDM++ can be overloaded
• Different definitions of operations with same

name
• Argument types must not be overlapping

statically (structural equivalence omitting
invariants)

VDM++ tutorial Introduction 60

Example Operation Definitions
An implicit operation definition could look like:

Withdraw(amount: nat) newBalance: int
ext rd limit : int

wr balance : int
pre balance - amount > limit
post balance + amount = balance~ and newBalance = balance

An explicit operation definition could look like:

Withdraw: nat ==> int
Withdraw(amount) ==
(balance := balance - amount;
return balance

)
pre balance - amount > limit

VDM++ tutorial Introduction 61

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

Types

Functions

Expressions, Patterns, Bindings

Operations

Statements
• Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 62

Statements

•Let and Let-be statements
•Define Statements
•Block statements
•Assign statements
•Conditional statements
•For loop statements
•While loop statements
•Call Statements

•Non deterministic
statements
•Return statements
•Exception handling
statements
•Error statements
•Identity statements

VDM++ tutorial Introduction 63

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Introduction
Access Modifiers and Constructors

Instance Variables

Types

Functions

Expressions, Patterns, Bindings

Operations

Statements
Concurrency

• Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDM++ tutorial Introduction 64

Concurrency Primitives in VDM++

• Concurrency in VDM++ is based on threads
• Threads communicate using shared objects
• Synchronization on shared objects is specified using

permission predicates

VDM++ tutorial Introduction 65

Threads

• Modelled by a class with a thread section
class SimpleThread
thread
let - = new IO().echo(”Hello World!”)

end SimpleThread

• Thread execution begins using start statement
with an instance of a class with a thread
definition
start(new SimpleThread)

VDM++ tutorial Introduction 66

Thread Communication

• Threads operating in isolation have limited use.
• In VDM++ threads communicate using shared

objects.

VDM++ tutorial Introduction 67

A Producer-Consumer Example

• Concurrent threads must be synchronized
• Illustrate with a producer-consumer example
• Produce before consumption …
• Assume a single producer and a single consumer
• Producer has a thread which repeatedly places data

in a buffer
• Consumer has a thread which repeatedly fetches data

from a buffer

Producer

Produce() : seq of char

Consumer

Consume(d : seq of char)

Buffer
data : [seq of char] = nil

Get() : seq of char
Put(newData : seq of char)

-b-b

VDM++ tutorial Introduction 68

The Producer Class
class Producer

instance variables

b : Buffer

operations

Produce: () ==> seq of char
Produce() == ...

thread
while true do

b.Put(Produce())
end Producer

VDM++ tutorial Introduction 69

The Consumer Class
class Consumer

instance variables

b : Buffer

operations

Consume: seq of char ==> ()
Consume(d) == ...

thread
while true do

Consume(b.Get())
end Consumer

VDM++ tutorial Introduction 70

The Buffer Class
class Buffer

instance variables

data : [seq of char] := nil

operations

public Put: seq of char ==> ()
Put(newData) ==
data := newData;

public Get: () ==> seq of char
Get() ==
let oldData = data
in
(data := nil;

return oldData
)

end Buffer

VDM++ tutorial Introduction 71

Permission Predicates

• What if the producer thread generates values
faster than the consumer thread can consume
them?

• Shared objects require synchronization.
• Synchronization is achieved in VDM++ using

permission predicates.
• A permission predicate describes when an

operation call may be executed.
• If a permission predicate is not satisfied, the

operation call blocks.

VDM++ tutorial Introduction 72

Permission Predicates

• General structure
sync

per operation name => predicate;
...

• For Put and Get we could write:
per Put => data = nil;

per Get => data <> nil;

VDM++ tutorial Introduction 73

History Counters and mutex

Counter Description

#req op The number of times that op has been requested

#act op The number of times that op has been activated

#fin op The number of times that op has been completed

#active op The number of active executions of op

•Mutual excusion (mutex)
•Blocking Puts and Gets while executing:
•mutex(Put,Get)

VDM++ tutorial Introduction 74

Permission Predicates: Details

• Permission predicates are described in the sync
section of a class
sync
per <operation name> => predicate

• The predicate may refer to the class’s instance
variables.

• The predicate may also refer to special variables
known as history counters.

VDM++ tutorial Introduction 75

History Counters

•History counters provide information about the number of
times an operation has been

•requested
•activated
•completed

Counter Description

#req(op) The number of times that op has been requested

#act(op) The number of times that op has been activated

#fin(op) The number of times that op has been completed

#active(op) The number of currently active invocations of op
(#req - #fin)

VDM++ tutorial Introduction 76

The Buffer Synchronized

• Assuming the buffer does not lose data, there are two
requirements:
• It should only be possible to get data, when the

producer has placed data in the buffer.
• It should only be possible to put data when the

consumer has fetched data from the buffer.
• The following permission predicates could model

these requirements:
• per Put => data = nil
• per Get => data <> nil

VDM++ tutorial Introduction 77

The Buffer Synchronized (2)

• The previous predicates could also have been written
using history counters:

• For example
per Get => #fin(Put) - #fin(Get) = 1

VDM++ tutorial Introduction 78

Mutual Exclusion

• Another problem could arise with the buffer: what if
the producer produces and the consumer consumes
at the same time?

• The result could be non-deterministic and/or counter-
intuitive.

• VDM++ provides the keyword mutex
• mutex(Put, Get)

• Shorthand for
• per Put => #active(Get) = 0
• per Get => #active(Put) = 0

VDM++ tutorial Introduction 79

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDMTools overview
• The VDM++/UML Process with the alarm example
• Industrial usage of VDMTools

VDM++ tutorial Introduction 80

VDMTools® Overview

The Rose-VDM++ Link

Document Generator

Code Generators
- C++, Java

Syntax & Type Checker
Integrity CheckerJava to VDM++

Interpreter (Debugger)

API (Corba), DL Facility

VDM++ tutorial Introduction 81

Japanese Support via Unicode

VDM++ tutorial Introduction 82

Validation with VDMTools®

VDM specsVDM specs Actual resultsActual results

ComparisonComparison

ExecutionExecution

Test casesTest cases Expected resultsExpected results

VDM++ tutorial Introduction 83

Documentation in MS Word/RTF

One compound document:One compound document:

• Documentation

• Specification

• Test coverage

• Test coverage

statistics

VDM++ tutorial Introduction 84

Architecture of the Rose VDM++ Link

VDM++ ToolboxVDM++ Toolbox Rational Rose 2000Rational Rose 2000

ClassClass
RepositoryRepository

ClassClass
RepositoryRepositoryMerge ToolMerge Tool

UMLUML
DiagramsDiagrams

UML modelUML model
filefile

VDM++ FilesVDM++ Files

VDM++ tutorial Introduction 85

Integrity checker

VDM++ tutorial Introduction 86

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDMTools overview
The VDM++/UML Process with the alarm example

• Industrial usage of VDMTools

VDM++ tutorial Introduction 87

Steps to Develop a Formal Model
1. Determine the purpose of the model.
2. Read the requirements.
3. Analyze the functional behavior from the requirements.
4. Extract a list of possible classes or data types (often from nouns) and

operations (often from actions). Create a dictionary by giving explanations to
items in the list.

5. Sketch out representations for the classes using UML class diagrams. This
includes the attributes and the associations between classes. Transfer this
model to VDM++ and check its internal consistency.

6. Sketch out signatures for the operations. Again, check the model's
consistency in VDM++.

7. Complete the class (and data type) definitions by determining potential
invariant properties from the requirements and formalizing them.

8. Complete the operation definitions by determining pre- and post conditions
and operation bodies, modifying the type definitions if necessary.

9. Validate the specification using systematic testing and rapid prototyping.
10. Implement the model using automatic code generation or manual coding.

VDM++ tutorial Introduction 88

A Chemical Plant

alarmalarm
expertexpert

VDM++ tutorial Introduction 89

A Chemical Plant Requirements
1. A computer-based system is to be developed to manage the alarms of this

plant.
2. Four kinds of qualifications are needed to cope with the alarms: electrical,

mechanical, biological, and chemical.
3. There must be experts on duty during all periods allocated in the system.
4. Each expert can have a list of qualifications.
5. Each alarm reported to the system has a qualification associated with it

along with a description of the alarm that can be understood by the expert.
6. Whenever an alarm is received by the system an expert with the right

qualification should be found so that he or she can be paged.
7. The experts should be able to use the system database to check when they

will be on duty.
8. It must be possible to assess the number of experts on duty.

VDM++ tutorial Introduction 90

The Purpose of the VDM++ Model

The purpose of the model is to clarify the rules
governing the duty roster and calling out of

experts to deal with alarms.

VDM++ tutorial Introduction 91

Creating a Dictionary
• Potential Classes and Types (Nouns)

• Alarm: required qualification and description
• Plant: the entire system
• Qualification (electrical, mechanical, biological, chemical)
• Expert: list of qualifications
• Period (whatever shift system is used here)
• System and system database? This is probably a kind of

schedule.
• Potential Operations (Actions)

• Expert to page: when an alarm appears (what's involved?
Alarm operator and system)

• Expert is on duty: check when on duty (what's involved?
Expert and system)

• Number of experts on duty: presumably given period
(what's involved? operator and system)

VDM++ tutorial Introduction 92

Guideline 1

Nouns from a dictionary should be modeled as types if, for
the purposes of the model, they need have only trivial

functionality in addition to read/write.

VDM++ tutorial Introduction 93

Sketching an Alarm

Defined as a VDM++ class:Defined as a VDM++ class:

classclass AlarmAlarm
instance variablesinstance variables

reqQualireqQuali: : Expert`QualificationExpert`Qualification
descrdescr : String;: String;

endend AlarmAlarm

VDM++ tutorial Introduction 94

Alternative Alarm

AlarmAlarm could also have been defined as a composite could also have been defined as a composite
type:type:

Alarm :: Alarm :: reqQualireqQuali : : Expert`QualificationExpert`Qualification
descrdescr : String: String

Then if Then if aa is of type is of type AlarmAlarm::

a.descra.descr is the description of is the description of aa

a.descra.descr : String: String

a.reqQualia.reqQuali : : Expert`QualificationExpert`Qualification

VDM++ tutorial Introduction 95

Guideline 2

Create an overall class to represent the entire system so
that the precise relationships between the different
classes and their associations can be expressed

there.

VDM++ tutorial Introduction 96

Guideline 3 and 4

Whenever an association is introduced consider its
multiplicity and give it a rôle name in the direction in

which the association is to be used.

If an association depends on some value, a qualifier
should be introduced for the association. The name of

the qualifier must be a VDM++ type.

VDM++ tutorial Introduction 97

Initial Class Diagram

class Plant
instance variables
public alarms : set of Alarm;
public schedule : map Period to set of Expert;

end Plant

VDM++ tutorial Introduction 98

Guideline 5

Declare instance variables to be private or protected to keep
encapsulation. If nothing is specified by the user, private is

assumed automatically.

class Expert
instance variables
private quali: set of Qualification;
end Expert

class Alarm
instance variables
private descr : String;
private reqQuali: Qualification;
end Alarm

VDM++ tutorial Introduction 99

Guideline 6 and 7
Use VDMTools to check internal consistency as soon as

class skeletons have been completed and before any
functionality has been introduced.

• Definition of types missing
• To be updated in the respective classes
• Resynchronized with the UML model

class Plant
types
Period = token;

end Plant

Tokens are useful for abstract models where unspecified
values are to be used.

VDM++ tutorial Introduction 100

Adding Quantification and String

class Expert
types
Qualification = <Mech> | <Chem> | <Bio> | <Elec>

end Expert

class Alarm
types
public String = seq of char;
instance variables
descr : String;
reqQuali : Expert`Qualification;

end Alarm

VDM++ tutorial Introduction 101

Guideline 8

Think carefully about the parameter types and the result
type as this often helps to identify missing connections

in the class diagram.

VDM++ tutorial Introduction 102

Updated UML Class Diagram

VDM++ tutorial Introduction 103

Guideline 9

Document important properties or constraints as
invariants.

class Plant
...

instance variables

alarms : set of Alarm;
schedule: map Period to set of Expert;
inv forall p in set dom schedule & schedule(p) <> {};

end Plant

VDM++ tutorial Introduction 104

Guideline 10

When there are several alternative ways of performing
some functionality, use an implicit definition so that

subsequent development work is not biased.

ExpertToPage: Alarm * Period ==> Expert
ExpertToPage(a, p) ==
is not yet specified

pre a in set alarms and
p in set dom schedule

post let expert = RESULT
in
expert in set schedule(p) and
a.GetReqQuali() in set expert.GetQuali();

VDM++ tutorial Introduction 105

Will the Qualification exist?

•• How can we be sure that an expert with the required How can we be sure that an expert with the required
qualification exists in the required period?qualification exists in the required period?

•• We need to add an invariant to the instance variables We need to add an invariant to the instance variables
of the of the PlantPlant classclass

•• That is using guideline 11That is using guideline 11

VDM++ tutorial Introduction 106

Guideline 11

When defining operations, try to identify additional
invariants.

instance variables

alarms : set of Alarm;
schedule: map Period to set of Expert;
inv forall p in set dom schedule & schedule(p) <> {};
inv forall a in set alarms &

forall p in set dom schedule &
exists expert in set schedule(p) &
a.GetReqQuali() in set expert.GetQuali();

VDM++ tutorial Introduction 107

Further Operations inside Plant

class Plant
operations
…

public NumberOfExperts: Period ==> nat
NumberOfExperts(p) ==
return card schedule(p)

pre p in set dom schedule;

public ExpertIsOnDuty: Expert ==> set of Period
ExpertIsOnDuty(ex) ==
return {p | p in set dom schedule &

ex in set schedule(p)};

end Plant

VDM++ tutorial Introduction 108

Guideline 12
Try to make explicit operation definitions precise and clear

and yet abstract compared to code written in a
programming language.

import java.util.*;

class Plant {

Map schedule;

Set ExpertIsOnDuty(Integer ex) {
TreeSet resset = new TreeSet();
Set keys = schedule.keySet();
Iterator iterator = keys.iterator();

while(iterator.hasNext()) {
Object p = iterator.next();
if (((Set) schedule.get(p)).contains(ex))

resset.add(p);
}
return resset;

}
}

VDM++ tutorial Introduction 109

Final UML Class Diagram

VDM++ tutorial Introduction 110

Guideline 13
Whenever a class has an invariant on its instance

variables and it has a constructor, it is worth placing the
invariant in a separate function if the constructor needs
to assign values to the instance variables involved in

the invariant.

functions

PlantInv: set of Alarm * map Period to set of Expert ->
bool

PlantInv(as,sch) ==
(forall p in set dom sch & sch(p) <> {}) and
(forall a in set as &

forall p in set dom sch &
exists expert in set sch(p) &
a.GetReqQuali() in set expert.GetQuali());

VDM++ tutorial Introduction 111

To be used inside Plant
Constructor

class Plant
…
public Plant: set of Alarm *

map Period to set of Expert ==>
Plant

Plant(als,sch) ==
(alarms := als;

schedule := sch
)
pre PlantInv(als,sch);
end Plant

VDM++ tutorial Introduction 112

Review Requirements (1)

R1: A computer-based system managing this plant is to
be developed.

R2: Four kinds of qualifications are needed to cope
with the alarms: electrical, mechanical, biological,
and chemical.

R3: There must be experts on duty at all times during
all periods which have been allocated in the system.

Considered in the Plant class definition and the
operation and function definitions.

Considered in the Qualification type definition
of the Expert class.

Invariant on the instance variables of class Plant.

VDM++ tutorial Introduction 113

Review Requirements (2)

R4: Each expert can have a list of qualifications.

R5: Each alarm reported to the system must have a
qualification associated with it and a description which
can be understood by the expert.

R6: Whenever an alarm is received by the system an
expert with the right qualification should be paged.

Assumption: non-empty set instead of list in class
Expert.

Considered in the instance variables of the Alarm
class definition assuming that it is precisely one
qualification.

The ExpertToPage operation with additional invariant
on the instance variables of the Plant class definition.

VDM++ tutorial Introduction 114

Review the Requirements (3)

R7: The experts should be able to use the system
database to check when they will be on duty.

R8: It must be possible to assess the number of
experts on duty.

The ExpertOnDuty operation.

The NumberOfExperts with assumption for a
given period.

VDM++ tutorial Introduction 115

Agenda

Part 1(9:00 – 10:30) The VDM++ Language
Part 2 (11:00 – 12:30) VDMTools and VDM++ examples

VDMTools overview
The VDM++/UML Process with the alarm example
Industrial usage of VDMTools

VDM++ tutorial Introduction 116

ConForm (1994)
• Organisation: British Aerospace (UK)
• Domain: Security (gateway)
• Tools: The IFAD VDM-SL Toolbox
• Experience:

• Prevented propagation of error
• Successful technology transfer
• At least 4 more applications without support

• Statements:

• “Engineers can learn the technique in one week”
• “VDMTools® can be integrated gradually into a

traditional existing development process”

VDM++ tutorial Introduction 117

DustExpert (1995-7)

• Organisation: Adelard (UK)
• Domain: Safety (dust explosives)
• Tools: The IFAD VDM-SL Toolbox
• Experience:

• Delivered on time at expected cost
• Large VDM-SL specification
• Testing support valuable

• Statement:

• “Using VDMTools® we have achieved a productivity
and fault density far better than industry norms for
safety related systems”

VDM++ tutorial Introduction 118

Adelard Metrics

Initial requirements 450 pages
VDM specification 16kloc (31 modules)

12kloc (excl comments)

Prolog
implementation

37kloc
16kloc (excl comments)

C++ GUI
implementation

23kloc
18kloc (excl comments)

• 31 faults in Prolog and C++ (< 1/kloc)
• Most minor, only 1 safety-related
• 1 (small) design error, rest in coding

VDM++ tutorial Introduction 119

CAVA (1998-2000)

• Organisation: Baan (Denmark)
• Domain: Constraint solver (Sales Configuration)
• Tools: The IFAD VDM-SL Toolbox
• Experience:

• Common understanding
• Faster route to prototype
• Earlier testing

• Statement:

• “VDMTools® has been used in order to increase
quality and reduce development risks on high
complexity products”

VDM++ tutorial Introduction 120

Dutch DoD (1997-8)

• Organisation: Origin, The Netherlands
• Domain: Military
• Tools: The IFAD VDM-SL Toolbox
• Experience:

• Higher level of assurance
• Mastering of complexity
• Delivered at expected cost and on schedule
• No errors detected in code after delivery

• Statement:

• “We chose VDMTools® because of high demands on
maintainability, adaptability and reliability”

VDM++ tutorial Introduction 121

DoD, NL Metrics (1)

kloc hours loc/hour
spec 15 1196 13

manual impl 4 471 8.5

automatic impl 90 0 NA
test NA 612 NA
total code 94 2279 41.2

tot AL

• Estimated 12 C++ loc/h with manual coding!

VDM++ tutorial Introduction 122

DoD - Comparative Metrics

CODING TESTING

CODING TESTINGANALYSIS &
DESIGN

Traditional:Traditional:

VDMToolsVDMTools®®::

CostCost

ANALYSIS &
DESIGN

900900 20002000 700700

12001200 500500 600600

0% 64%

100%

VDM++ tutorial Introduction 123

BPS 1000 (1997-)
• Organisation: GAO, Germany
• Domain: Bank note processing
• Tools: The IFAD VDM-SL Toolbox
• Experience:

• Better understanding of sensor data

• Errors identified in other code

• Savings on maintenance

• Statement:

• VDMTools provides unparalleled support for design
abstraction ensuring quality and control throughout
the development life cycle.

VDM++ tutorial Introduction 124

Flower Auction (1998)
• Organisation: Chess, The Netherlands

• Domain: Financial transactions

• Tools: The IFAD VDM++ Toolbox

• Experience:

• Successful combination of UML and VDM++

• Use iterative process to gain client commitment

• Implementers did not even have a VDM course
• Statement:

• “The link between VDMTools and Rational Rose is
essential for understanding the UML diagrams”

VDM++ tutorial Introduction 125

SPOT 4 (1999)

• Organisation: CS-CI, France
• Domain: Space (payload for SPOT4 satellite)
• Tools: The IFAD VDM-SL Toolbox
• Experience:

• 38 % less lines of source code
• 36 % less overall effort
• Use of automatic C++ code generation

• Statement:

The cost of applying Formal methods is significantly
lower than without them.

VDM++ tutorial Introduction 126

Japanese Railways (2000-2001)

• Domain: Railways (database and interlocking)
• Experience:

• Prototyping important
• Now also using it for ATC system

• Engineer working at IFAD for two years with
PROSPER proof support

VDM++ tutorial Introduction 127

Stock-options (2000-)
•Organisation: JFITS (CSK group company), Japan
•Domain: Financial
•Tools: The IFAD VDM++ Toolbox
•Reason for CSK to purchase VDMTools

Tax exemption COCOMO Realized

Effort 38,5 person months 14 person months

Schedule 9 months 3,5 months

Options COCOMO Realized

Effort 147,2 person months 60,1 person months

Schedule 14,3 months 7 months

VDM++ tutorial Introduction 128

Reverse Engineering (2001)

• Organisation: Boeing
• Domain: Avionics
• Tools: The IFAD VDM++ Toolbox
• Included development of Java to VDM++ reverse

engineering feature

VDM++ tutorial Introduction 129

Optimisation (2001)

• Organisation: Transitive TechnologiesTransitive Technologies, UK, UK
•• Domain:EmbeddedDomain:Embedded
•• ToolsTools: : TheThe IFAD VDMIFAD VDM--SL SL ToolboxToolbox
•• MakingMaking software software independentindependent ofof hardware platformhardware platform

VDM++ tutorial Introduction 130

Quote of the day

The successful construction of all machinery depends on
the perfection of the tools employed, and whoever is

the master in the art of tool-making possesses the key
to the construction of all machines.

Charles Babbage, 1851

Any questions?

	VDM++ Tutorial at FM’06
	Agenda
	Who gives this tutorial?
	Vienna Development Method
	Where has VDM++ been used?
	Industrially Inspired Examples
	Validation Techniques
	Validation via Animation
	Agenda
	VDM++ Class Outline
	Access Modifiers
	Constructors
	Agenda
	Instance Variables (1)
	Instance Variables (2)
	Agenda
	Type Definitions
	Boolean
	Numeric (1)
	Numeric (2)
	Product and Record Types
	Example Record Definition
	Example Tuple Definition
	Overview of Set Operators
	Set Comprehensions
	Sequence Operators
	Sequence Comprehensions
	Map Operators
	Mapping Comprehensions
	Invariants
	Agenda
	Function Definitions (1)
	Function Definitions (2)
	Quoting pre- and post-conditions
	Agenda
	Expressions
	Example Let Expressions
	Example Let-be expressions
	If-then-else Expressions
	Cases Expressions
	Set Expressions
	Sequence Expressions
	Map Expressions
	Tuple Expressions
	Record Expression
	Apply Expressions
	Is Expressions
	Define Expressions
	Lambda Expressions
	New and Self Expressions
	Class Membership Expressions
	Object Comparison Expressions
	Object Reference Expressions
	Patterns and Pattern Matching
	Bindings
	Agenda
	Operation Definitions (1)
	Operation Definitions (2)
	Operation Definitions (3)
	Example Operation Definitions
	Agenda
	Statements
	Agenda
	Concurrency Primitives in VDM++
	Threads
	Thread Communication
	A Producer-Consumer Example
	The Producer Class
	The Consumer Class
	The Buffer Class
	Permission Predicates
	Permission Predicates
	History Counters and mutex
	Permission Predicates: Details
	History Counters
	The Buffer Synchronized
	The Buffer Synchronized (2)
	Mutual Exclusion
	Agenda
	VDMTools® Overview
	Japanese Support via Unicode
	Validation with VDMTools®
	Documentation in MS Word/RTF
	Architecture of the Rose VDM++ Link
	Integrity checker
	Agenda
	Steps to Develop a Formal Model
	A Chemical Plant
	A Chemical Plant Requirements
	The Purpose of the VDM++ Model
	Creating a Dictionary
	Guideline 1
	Sketching an Alarm
	Alternative Alarm
	Guideline 2
	Guideline 3 and 4
	Initial Class Diagram
	Guideline 5
	Guideline 6 and 7
	Adding Quantification and String
	Guideline 8
	Updated UML Class Diagram
	Guideline 9
	Guideline 10
	Will the Qualification exist?
	Guideline 11
	Further Operations inside Plant
	Guideline 12
	Final UML Class Diagram
	Guideline 13
	To be used inside Plant Constructor
	Review Requirements (1)
	Review Requirements (2)
	Review the Requirements (3)
	Agenda
	ConForm (1994)
	DustExpert (1995-7)
	Adelard Metrics
	CAVA (1998-2000)
	Dutch DoD (1997-8)
	DoD, NL Metrics (1)
	DoD - Comparative Metrics
	BPS 1000 (1997-)
	Flower Auction (1998)
	SPOT 4 (1999)
	Japanese Railways (2000-2001)
	Stock-options (2000-)
	Reverse Engineering (2001)
	Optimisation (2001)
	Quote of the day

